Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2015] [¹Ì±¹] ž翡³ÊÁö¸¦ ÀÌ¿ëÇÏ¿© ÀÌ»êȭź¼Ò¸¦ ¿¬·á·Î ÀüȯÇÏ´Â ¹æ¾È
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2015.11.02 Á¶È¸¼ö 456
ÆÄÀÏ÷ºÎ
[¹Ì±¹] ž翡³ÊÁö¸¦ ÀÌ¿ëÇÏ¿© ÀÌ»êȭź¼Ò¸¦ ¿¬·á·Î ÀüȯÇÏ´Â ¹æ¾È
 
°ø±â·ÎºÎÅÍ ÀÌ»êȭź¼Ò(carbon dioxide)¸¦ Á÷Á¢ Æ÷ȹÇÏ¿© ÅÂ¾ç ¿¡³ÊÁö(solar energy)¸¦ ÀÌ¿ëÇÏ¿© ¿¬·á(fuel)·Î ÀüȯÇÏ´Â °ÍÀº Áö±¸ ¿Â³­È­¸¦ ¿ÏÈ­½ÃÅ°´Â ¼ö´ÜÀ» Á¦°øÇÏ´Â ÇÑÆí, ¹Ì·¡ ¿¡³ÊÁö ¼ö¿ä¸¦ Áö¿øÇÒ °ÍÀÌ´Ù. ÀÚ¿¬ÀûÀÎ ±¤ÇÕ¼º(natural photosynthesis)ÀÌ ÀÌ»êȭź¼Ò¿Í ¹°À» źȭ¼ö¼Ò·Î Àüȯ½ÃÅ°´Â ¹Ý¸é, ÀÌ °øÁ¤Àº ´Ü 0.5~2.0% È¿À²À» ±â·ÏÇÏ°í, °á°úÀûÀ¸·Î ¾ò¾îÁö´Â ¹ÙÀÌ¿À¸Å½ºÀÇ ¿¡³ÊÁö ÇÔ·®Àº ³·´Ù.

Áõ°¡ÇÏ´Â ¿¡³ÊÁö ´ÏÁî¿Í °áÇÕÇÑ ´ë±â¿¡¼­ ÀÌ»êȭź¼Ò ¼öÁØÀÇ Áõ°¡´Â ÀÚ¿¬¿¡¼­ ÀÌ¿ëµÇ´Â °Íº¸´Ù ÃÖ¼Ò 10¹è ÀÌ»ó ´õ È¿À²ÀÌ ³ôÀº Àΰø ±¤ÇÕ¼º ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿¬±¸¿¡ µ¿ÀÎÀ» Á¦°øÇß´Ù. >2 VÀÇ ±¤Àü¾Ð°ú >10 mA cm-2ÀÇ ±¤Àü·ù ¹Ðµµ¸¦ Á¦°øÇÏ´Â Àϱ¤ Èí¼öÀÚ(light absorber)ÀÇ ±Ô¸íÀº ÃÖ¼Ò 10% ÀÌ»óÀÇ È¿À²ÀûÀÎ Àΰø ±¤ÇÕ¼º ½Ã½ºÅÛÀ» ±¸ÇöÇϴµ¥ ÇÊ¿äÇÑ ÀüÁ¦Á¶°ÇÀÌ´Ù.

¹Ì±¹ ·Î·»½º ¹öŬ¸® ±¹¸³ ¿¬±¸¼Ò(Lawrence Berkeley National Laboratory) »êÇÏ Àΰø ±¤ÇÕ¼º Á¶ÀÎÆ® ¿¬±¸¼Ò(Joint Center for Artificial Photosynthesis) ¼Ò¼ÓÀÇ ¿¬±¸ÁøÀº ÀÚ¿¬ÀûÀÎ ±¤ÇÕ¼ºÀÇ 10¹è ÀÌ»ó Áõ°¡µÈ È¿À²·Î ÅÂ¾ç ¿¡³ÊÁö¸¦ ÀÌ¿ëÇÏ¿© ÀÌ»êȭź¼Ò¸¦ ¿¬·á·Î ÀüȯÇÏ´Â ¹æ¾ÈÀ» °³¹ßÇß´Ù. Meenesh Singh, Ezra Clark ¹× Alexis Bell µîÀÇ ¿¬±¸ÁøÀº °ü·Ã ¿¬±¸¸¦ ¹Ì±¹ ±¹¸³°úÇпø ȸº¸(PNAS; Proceedings of the National Academy of Sciences)¿¡ ¹ßÇ¥Çß´Ù. ¿¬±¸ÁøÀº ¿¬±¸ÁøÀÌ Å×½ºÆ®ÇÑ ´Ù¾çÇÑ ½Ã³ª¸®¿À¿¡ ´ëÇÏ¿© ±â¼úÇßÀ¸¸ç, È¿À²¿¡¼­ °üÂûµÈ ÀÌ·¯ÇÑ Áõ°¡°¡ ¾î¶»°Ô °¡´ÉÇß´ÂÁö¿¡ ´ëÇÏ¿© ¼³¸íÇß´Ù.

ÀÌ»êȭź¼Ò´Â ÀÏ»êȭź¼Ò(carbon monoxide)¿Í ¼ö¼Ò(hydrogen)ÀÇ È¥ÇÕ¹°·Î ¶Ç´Â ¼ö¼Ò¿Í ¸ÞźÀÇ È¥ÇÕ¹°·Î ÀüȯÇÏ´Â °ÍÀº ´ë±â·ÎºÎÅÍ ÀÌ»êȭź¼Ò¸¦ Á¦°ÅÇÏ°í º¸´Ù ´õ ûÁ¤ÇÑ ¿¬·á¸¦ Á¦°øÇÏ´Â µÎ °¡Áö À̵æÀ» Á¦°øÇÑ´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ÀÚ¿¬ÀûÀÎ ±¤ÇÕ¼ºÀ» ¸ð¹æÇÏÁö¸¸, ÇöÀçÀÇ ±â¼úÀº ¾à 7%±îÁöÀÇ È¿À²À» ´Þ¼ºÇÏ´Â µ¥ ±×Ä£´Ù. ·Î·»½º ¹öŬ¸® ±¹¸³ ¿¬±¸¼Ò ¼Ò¼ÓÀÇ ¿¬±¸ÁøÀº ÈξÀ ´õ ³ôÀº È¿À²À» ±¸ÇöÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ¹Ï°í ÀÖ´Ù. ¿¬±¸ÁøÀº ¹Ì±¹ ¿¡³ÊÁöºÎ(U.S. Department of Energy)ÀÇ ÈÄ¿øÀ¸·Î ÇÁ·Î±×·¥À» ÁøÇàÇØ¿ÔÀ¸¸ç, 5³â À̳»¿¡ ½ÃÁ¦Ç°À» ±¸ÃàÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëÇÏ°í ÀÖ´Ù. ÃֽŠ¿¬±¸¿¡¼­, ¿¬±¸ÆÀÀº 4°¡Áö ´Ù¸¥ À¯ÇüÀÇ Àΰø ±¤ÇÕ¼º ±â¼úÀ» Á¶¸íÇß´Ù.

4°¡Áö ´Ù¸¥ À¯ÇüÀÇ Àΰø ±¤ÇÕ¼º Áß 3°¡Áö ±â¼úÀº ±¤ÀüÁö(photoelectric cell)¿¡ ÀÇÁ¸ÇÏ°í, ´Ù¸¥ ÇÑ °¡ÁöÀÎ ±¤ÀüÁö ±¸¼º ¿ä¼Ò´Â ¹ÝÀÀ è¹öÀÇ ¿ÜºÎ¿¡ ¹èÄ¡µÇ´Â ½Ã½ºÅÛÀÎ ±¤ÀüÁö ÀüÇØÁ¶(photovoltaic electrolyzer)¸¦ Æ÷ÇÔÇÏ°í ÀÖ´Ù. ¶Ç ÀÌ ¿¬±¸ÀÇ ÀÏȯÀ¸·Î ¿¬±¸ÆÀÀº ¹ÝÀÀ¿¡¼­ ±¸¸® À½±Ø(copper cathode) ¶Ç´Â Àº À½±Ø(silver cathode)À» »ç¿ëÇÏ´Â ¹æ¹ý¿¡ ´ëÇÏ¿© Á¶¸íÇß´Ù.

¿­¿ªÇÐÀûÀ¸·Î Àϱ¤À» ÃßÁøÇÏ¿© ¹°°ú ÀÌ»êȭź¼Ò¸¦ ¿¬·á·Î Àü±âÈ­ÇÐÀûÀ¸·Î ÀüȯÇÏ´Â Àü±âÈ­ÇÐÀû ÀüȯÀÌ Àϱ¤ Èí¼ö ¿äÀÎÀÇ ±â´É°ú Ư¼º ¹× Ã˸ŠÁ¶¼º µîÀÇ Ãø¸é¿¡¼­ Á¶»çµÆ´Ù. ´Ù¾çÇÑ Àϱ¤ ¿¬·áÀÇ ´Ü¿­ÀÇ Àü±âÈ­ÇÐÀû ÇÕ¼ºÀ» À§ÇÑ 1-sun illumination¿¡¼­ ÃÖ´ë ¿­¿ªÇÐÀû È¿À²Àº 32~42%ÀÇ ¹üÀ§¿¡ ÀÖ´Ù. ´ÜÀÏ, ÀÌÁß ¹× 3Áß Á¢ÇÕ Àϱ¤ Èí¼öÀÚ´Â °¢°¢ 0~0.9 V, 0.9~1.95 V, ¹× 1.95~3.5 V µîÀÇ Àü±âÈ­ÇÐÀû ºÎÇÏ ¹üÀ§¿¡ ´ëÇÏ¿© ÃÖÀûÀÇ ¼º´ÉÀ» ³¾ ¼ö ÀÖ´Ù´Â »ç½ÇÀÌ È®ÀεƴÙ.

¼ºÃëÇÒ ¼ö ÀÖ´Â STF(solar-to-fuel) È¿À²Àº ÀÌ»óÀûÀÎ 2Áß ¹× 3Áß Àϱ¤ Èí¼öÀÚ, Àº À½±Ø°ú ±¸¸® À½±Ø¿¡ ´ëÇÑ ÀÌ»êȭź¼ÒÀÇ È¯¿ø¿¡ ´ëÇÑ Àü±âÈ­ÇÐÀû ºÎÇÏ °î¼± ¹× À̸®µã »êÈ­¹°¿¡ ´ëÇÑ ¹° »êÈ­ ¿ªÇÐ µîÀ» ÀÌ¿ëÇÏ¿© °áÁ¤µÆ´Ù. ¼ö¼Ò¿Í ÀÏ»êȭź¼ÒÀÇ ÇÕ¼º°¡½º¿¡ ´ëÇØ ÃÖ´ë ´Þ¼ºÇÒ ¼ö ÀÖ´Â STF È¿À²°ú Çìź(Hythane, ¼ö¼Ò¿Í ¸Þź, hydrogen-methane)ÀÇ STF È¿À²Àº °¢°¢ 18.4 %¿Í 20.3%ÀÌ´Ù. ÇÏÀÌźÀº õ¿¬°¡½º ¶Ç´Â µðÁ©º¸´Ù ¿¬¼ÒÇÒ ¶§ ÈξÀ ´õ ÀûÀº ¹è±â°¡½º¸¦ »ý¼ºÇÑ´Ù°í ¿¬±¸ÁøÀº ÁöÀûÇß´Ù.

¹Ý¸é ½ÇÁ¦ÀûÀÎ ±¤Àü±âÈ­ÇÐÀüÁö(PECs; photoelectrochemical cells)ÀÇ STF È¿À²Àº 0.8%·Î ³·¾Ò´Ù. ÀûÃþÇü PECs¿Í PV ÀüÇØÁ¶´Â ÀÌ»óÀûÀÎ ¿î¿µ Á¶°Ç¿¡¼­ 7.2%¿¡¼­ ¿î¿µµÆ´Ù. ¿¬±¸ÁøÀº ÅÂ¾ç ¿¬·áÀÇ ¿¡³ÊÁö ÇÔ·®°ú Á¶¼ºÀÌ 3Áß Á¢ÇÕ Àϱ¤ Èí¼öÀÚ(triple-junction light absorber)ÀÇ ¹êµå-°¸À» Á¶Á¤ ¶Ç´Â ÃË¸Å¿Í PV ¸éÀû ºñÀ²¿¡ ÀÇÇØ Á¶ÀýµÉ ¼ö ÀÖÀ¸¸ç, ¾×ü »ý¼º¹°°ú ¸ÞźÀÇ ÇÕ¼º ºñÀ²Àº ³ôÀº ¼öÀͼº ¼öÁö¸¦ ³ªÅ¸³Â´Ù°í ¹àÇû´Ù.

¿¬±¸ÆÀÀº ÀÌ ¿¬±¸·ÎºÎÅÍ ÃâÇöÇÑ Æ¯Á¤ ÀåÄ¡°¡ Å« Àϱ¤ º¹ÇÕüÀÇ ÇÑ ºÎºÐÀ¸·Î »ç¿ëµÉ ¼ö ÀÖÀ» °ÍÀ̸ç, ¿¬±¸ÆÀÀÌ ¹Ì·¡ ´ÏÁ ÃæÁ·Çϴµ¥ ÃæºÐÇÏÁö ¾Ê´Ù°í ¹Ï°í ÀÖ´Â ¹èÅ͸®°¡ °ü¿©ÇÏ´Â ¹æ½Ä°ú´Â ´Ù¸¥ ¹æ½ÄÀ¸·Î °úµµÇÑ ¿¡³ÊÁö¸¦ ÀúÀåÇÏ´Â ¹æ¹ýÀ» Á¦°øÇÑ´Ù°í ¹Ï°í ÀÖ´Ù. ¿¬±¸ÁøÀº ÀÌ·¯ÇÑ ÀåÄ¡°¡ ÁÖº¯ °ø±â·ÎºÎÅÍ ÀÌ»êȭź¼Ò¸¦ Á÷Á¢ÀûÀ¸·Î ²ø¾î´ç±æ ¼ö ÀÖ´ÂÁö ¿©ºÎ¸¦ Àå´ãÇÒ ¼ö ¾øÁö¸¸, õ¿¬°¡½º À¯Á¤À¸·ÎºÎÅÍ »ý¼ºµÈ ±âüó·³ ÇöÀçÀÇ °ø±Þ¿øÀ» ÀÌ¿ëÇϱâ À§ÇÑ ´õ Çö¸íÇÑ ¾ÆÀ̵ð¾î°¡ µÉ ¼ö ÀÖ´Ù°í ÁöÀûÇß´Ù.
 
[Ãâó = KISTI ¹Ì¸®¾È ¡º±Û·Î¹úµ¿Çâºê¸®ÇΡ»/ 2015³â 11¿ù 02ÀÏ]

[¿ø¹®º¸±â]

Study suggests a ten-fold efficiency increase possible when converting carbon dioxide to fuel using solar energy

A trio of researchers with Lawrence Berkeley National Laboratory working at the Joint Center for Artificial Photosynthesis has found that it should be possible to achieve an approximate ten-fold increase in efficiency over natural photosynthesis, when converting carbon dioxide to fuel using solar energy. In their paper published in Proceedings of the National Academy of Sciences, Meenesh Singh, Ezra Clark and Alexis Bell describe the various scenarios they tested and why they believe it should be possible to achieve such boosts in efficiency.

Converting carbon dioxide to carbon monoxide and a blend of hydrogen, or better yet, to a mix of hydrogen and methane would offer the twin benefits of providing a cleaner fuel and removing carbon dioxide from the atmosphere. Such techniques mimic natural photosynthesis, but take the idea farther—plants range in efficiency from 0.5 to 2 percent—current technology bumps that up to approximately seven percent, but the researchers at Lawrence Berkeley believe it can be pushed much higher. They have been working under a program funded by the U.S. Department of Energy and hope to have a prototype within five years. In this latest work the team looked at four different types of artificial photosynthesis techniques, three of which rely on photoelectric cells (with different numbers of p-n junctions) the other involves a photovoltaic electrolyzer, which is a system where the photovoltaic component lies outside of the reaction chamber. As part of the study, they also looked at using copper or silver cathodes in the reactions.

The team has found that thus far, two configurations appear to be ideal—one should be able to produce a synthetic gas at 18.3 percent efficiency, while the other should be able to produce hythane at approximately 20.3 percent efficiency. Hythane, they note, produces far less emissions when burned, than either natural gas or diesel.

The team believes that any devices that emerge from their research would likely be used as part of a large solar complex, offering a way to "store" excess energy in a way that does not involve batteries, which the team believes are not sufficient to meet the needs of the future. They are not sure whether such devices would actually be able to pull the carbon dioxide directly from the surrounding air, however, noting that it might be a better idea to use a current source, such as gas generated from a natural gas well.
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [Áß±¹] PPP ½Ã¹ü ÇÁ·ÎÁ§Æ® ÃÑ ÅõÀÚ ±Ô¸ð 8,000¾ï À§¾È ÀÌ»ó
´ÙÀ½±Û [·¯½Ã¾Æ] Æó±â¹°Ã³¸®½ÃÀå ¡®ºí·ç¿À¼Ç¡¯À¸·Î ºÎ»ó
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.