Áñ°Üã±â Ãß°¡     ½ÃÀÛÆäÀÌÁö·Î ¼³Á¤ óÀ½À¸·Î  l  ·Î±×ÀΠ l  È¸¿ø°¡ÀÔ  l  »çÀÌÆ®¸Ê

>
ȸ¿ø°¡ÀÔ   l   ¾ÆÀ̵ð/ºñ¹Ð¹øȣã±â
¡®Á¦38ȸ 2023³â »ó¹Ý±â ...
¡®Á¦37ȸ 2022³â ÇϹݱâ ...
Á¦37ȸ ¡¸2022³â ÇϹݱâ ...
 
HOME > ÇؿܽÃÀåÁ¤º¸ > ÃֽŴº½º
[2014] [¹Ì±¹] NOAA, ¸ß½ÃÄÚ¸¸°ú ü¼­ÇÇÅ©¸¸ÀÇ µ¥µåÁ¸ ¿¹Ãø
À̸§ °ü¸®ÀÚ waterindustry@hanmail.net ÀÛ¼ºÀÏ 2014.07.17 Á¶È¸¼ö 499
ÆÄÀÏ÷ºÎ
[¹Ì±¹] NOAA, ¸ß½ÃÄÚ¸¸°ú ü¼­ÇÇÅ©¸¸ÀÇ µ¥µåÁ¸ ¿¹Ãø

»õ·Î¿î ¿¬±¸¿¡ µû¸£¸é °úÇÐÀÚµéÀº ¿ÃÇØ ¿©ÀüÈ÷ ¸ß½ÃÄÚ¸¸¿¡ Æò±ÕÀûÀÎ µ¥µåÁ¸ÀÌ Á¸ÀçÇÏ°í ü¼­ÇÇÅ©¸¸Àº Æò±ÕÀÌ»óÀÇ Àú»ê¼ÒÁõÀÌ ¹ß°ßµÈ´Ù°í ¹àÇû´Ù.
º¸Á¶ ¸ðµ¨¸µ NOAA´Â ¸ß½ÃÄÚ¸¸ÀÇ Àú»ê¼Ò Áö¿ªÀº 4õ633~5õ708 Æò¹æ¸¶ÀÏ·Î ¿¹Ãø, ¾à ÄÚ³×ƼÄÆÁÖÀÇ Å©±âÀÌ´Ù. NOAA-funded forecast´Â ÇÑ¿©¸§ Àú»ê¼Ò Áö¿ªÀº 1.97 ÀԹ渶ÀÏ, ÃÊ¿©¸§ ¹«»ê¼Ò Áö¿ªÀº 0.51 ÀԹ渶ÀÏ, ´Ê¿©¸§ ¹«»ê¼Ò Áö¿ªÀº 0.32¸¶ÀÏ·Î ¿¹ÃøµÆ°í ´ë±Ô¸ð ¾î±ÍÀÇ ¾ãÀº ¼ö½ÉÀ» ¿øÀÎÀ¸·Î º¸°í ÀÖ´Ù.

[¿ø¹®º¸±â]

NOAA, partners forecast 'dead zone' conditions in Gulf of Mexico, Chesapeake Bay

According to new research, scientists are expecting an average but still large hypoxic zone, or "dead zone," in the Gulf of Mexico this year, as well as a slightly above-average hypoxia in the Chesapeake Bay. While close to averages since the late 1990s, these hypoxic zones are many times larger than what research has shown them to be prior to the significant human influences that greatly expanded their sizes and effects.

NOAA-supported modeling is forecasting this year's Gulf of Mexico hypoxic zone to cover an area ranging from about 4,633 to 5,708 square miles (12,000 to 14,785 square kilometers), or about the size of the state of Connecticut. A second NOAA-funded forecast, for the Chesapeake Bay, predicts a mid-summer low-oxygen hypoxic zone of 1.97 cubic miles and an early-summer oxygen-free anoxic zone of 0.51 cubic miles, with the late-summer oxygen-free anoxic area predicted to be 0.32 cubic miles. Because of the shallow nature of large areas of the estuary, the focus is on water volume or cubic miles instead of square mileage as used in the Gulf.

The Gulf of Mexico prediction is based on models developed by NOAA-sponsored modeling teams and individual researchers at the University of Michigan, Louisiana State University, Louisiana Universities Marine Consortium, Virginia Institute of Marine Sciences/College of William and Mary, Texas A&M University, and the U.S. Geological Survey (USGS), and relies on nutrient loading estimates from the USGS. The Chesapeake Bay prediction is based on models developed by NOAA-sponsored researchers at the University of Maryland Center for Environmental Science and the University of Michigan, and again relies on nutrient loading estimates from USGS.

The dead zone in the Gulf of Mexico affects nationally important commercial and recreational fisheries and threatens the region's economy. The Chesapeake Bay dead zones, which have been highly variable in recent years, threaten a multi-year effort to restore the water and habitat quality to enhance its production of crabs, oysters and other important fisheries. The research also accounts for the influence of variable weather and oceanographic conditions and predict that these can affect the dead zone area by as much as 38 percent.

Later this year, researchers will measure oxygen levels in both bodies of water. The confirmed size of the 2014 Gulf hypoxic zone will be released in late July or early August, following a mid-July monitoring survey led by the Louisiana Universities Marine Consortium. The final measurement in the Chesapeake will come in October following surveys by the Chesapeake Bay Program's partners from the Maryland Department of Natural Resources and the Virginia Department of Environmental Quality.

USGS nutrient-loading estimates for the Mississippi River and Chesapeake Bay are used in the hypoxia forecasts for the Gulf and Chesapeake Bay. The Chesapeake data are funded with a cooperative agreement between USGS and the Maryland Department of Natural Resources. USGS also operates more than 65 real-time nitrate sensors in these two watersheds to track how nutrient conditions are changing over time.

For the Gulf of Mexico, USGS estimates that 101,000 metric tons of nitrate flowed down the Mississippi River into the northern gulf in May 2014, which is less than the 182,000 metric tons in last May when stream flows were above average. In the Chesapeake Bay, USGS estimates that 44,000 metric tons of nitrogen entered the bay from the Susquehanna and Potomac rivers between January and May of 2014, which is higher than the 36,600 metric tons delivered to the Bay during the same period in 2013.

[Ãâó = Water World / 2014³â 7¿ù 10ÀÏ]
¨Ï±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ(www.waterindustry.co.kr) ¹«´ÜÀüÀç ¹× Àç¹èÆ÷±ÝÁö
ÀÌÀü±Û [¹Ì±¹] CA ÀÇ·á¼¾ÅÍ, È¿À²ÀûÀÎ ¹° »ç¿ë ÇÁ·Î±×·¥ ¼º°ø
´ÙÀ½±Û [¹Ì±¹] CA ´ã¼öÈ­, À¯ÀÔÁ¤À» »ç¿ëÇØ Çؼö Ãë¼ö
±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ.   ¼¾ÅÍÀå : ¹èö¹Î
ÁÖ¼Ò : ¼­¿ï½Ã ¼ÛÆı¸ »ïÀüµ¿ 72-3 À¯¸²ºôµù 5Ãþ TEL (02) 3431-0210   FAX (02) 3431-0260   E-mail waterindustry@hanmail.net
COPYRIGHT(C) 2012 ±Û·Î¹ú¹°»ê¾÷Á¤º¸¼¾ÅÍ. ALL RIGHT RESERVED.